

Amaryllis Van Craenenbroeck, MD PhD

Department of Nephrology-Hypertension, UZA 08/03/2016

Guidelines

- 2.5-5h/week on physical activity or aerobic exercise training of at least moderate intensity
- OR <u>1-2.5h/week</u> on vigorous intense exercise
- Sedentary subjects should be strongly encouraged to start lightintensity exercise programmes

Etta Clark, 'Growing old is not for sissies'

- Patients with previous ACS, CABG, PCI or stable CAD should undergo moderate-to-vigorous intensity aerobic exercise training
 - >3 times/week
 - 30 minutes per session

Etta Clark, 'Growing old is not for sissies'

Dialysis

- All dialysis patients should be counseled and regularly encouraged by nephrology and dialysis staff to increase their level of physical activity (B).
- The goal for activity should be for aerobic exercise at a moderate intensity for 30 minutes most, if not all, days per week (C).
- Patients who are not currently physically active should start at very low levels and durations, and gradually progress to this recommended level (C).
- Physical functioning assessment and encouragement for participation in physical activity should be part of the routine patient care plan (C).

CKD

- People with CKD should be encouraged to undertake physical activity compatible with cardiovascular health and tolerance, aiming for at least
 - 30 minutes
 - 5 times/week (ID)

Why should we exercise?

- You will improve your cardiovascular risk profile
 - people aged <50 years, men, and people with type 2 diabetes, hypertension, dyslipidemia, or metabolic syndrome benefit even more

Meanwhile...

Some real numbers

- Cardiovascular disease is the number I killer of patients with CKD
 - Most CKD patients will die before they reach ESRD and the need for RRT
- In Europe, about 10% of the adults are confronted with CKD
 - In elderly patients and in subjects with high-risk diseases, such as CVD,
 hypertension and diabetes, it is even 35%

Exercise: how does it work?

Primary effects Secondary effects improved endothelial function Improvement CV risk profile vascular repair by EPC weight control stabilization of vulnerable plaques arterial hypertension decreased platelet reactivity lipid profile anti-inflammatory effects insulin resistance upregulation anti-oxidative mechanisms Psychosocial well-being enhanced collateralisation reduced myocardial oxygen demand Cardiovascular Physical activity mortality ↓ **Tertiary effects** environment and transport air pollution climate change workplace rural → urban migration

Exercise in CKD: what is the evidence?

CKD: a clinical model of premature vascular ageing

Longevity is a vascular question.

A man is only as old as his arteries.

Thomas Sydenham 1624-1699

The CVD disease burden in CKD

Mortality

Figure: causes of death per chronic kidney disease stage (Canadian data). Data are adjusted per eGFR for age and sex to the WHO world averages in 2000-05.

Morbidity

Spectrum of CVD in CKD

CHRONIC KIDNEY DISEASE

CARDIOVASCULAR MORTALITY

Endothelial dysfunction: a suitable target for preventive strategies

 Reversible process which precedes structural alterations of atherosclerosis

STEP 2: plaque formation

Smooth-muscle Foam-cell T-cell aggregatio platelet:

STFP 3: advanced lesion

STFP 4: vulnerable plaque

- Takes place early in predialysis CKD even in the absence of clinically apparent cardiovascular disease
- Worsens parallel to renal function

NO bioavailability in physiological conditions

NO bioavailability in CKD

Mechanisms of training-induced increase in NO bioavailability

Exercise in CKD: the fountain of youth?

Exercise terminology

Exercise capacity/exercise tolerance

- Maximal level of metabolic work achieved during exercise testing
- Gold standard of measurement is VO₂peak: peak oxygen consumption by the body achieved during maximal exercise testing

Physical activity

- Any bodily movement produced by skeletal muscles that results in energy expenditure.
- **Exercise** is a subset of physical activity that is planned, structured, and repetitive and has a final or an intermediate objective the improvement or maintenance of physical fitness

Exercise training?

- Type: aerobic, resistance or combination
- Intensity
 - Heart rate
 - RPE (rate of perceived exertion)
- Frequency
- Duration

Short-term: ≤3 months

Medium-term: 4-6 months

Long-term: 6-12 months

Exercise intolerance in CKD

- I. \downarrow VO₂ peak compared to healthy controls
- 2. Strong predictor of survival

Time, days

Table 1. Exercise Capacity in Patients With CKD Compared With Healthy Controls or Norms

Study	No.	Age (y)	(e)GFR (mL/min/1.73 m ²)	Vo ₂	Fraction of Reference Vo ₂ (%) ^a
Eidemak et al, ⁴ 1997	15 (8 M, 7 F)	45	26	25 mL/kg/min	62
Boyce et al,5 1997	8	50.4 ± 6.8		1.3 L/min	66
Castaneda et al,6 2001	14 (8 M, 6 F)	65 ± 9	24.8	16.0 ± 5.1 mL/kg/min	
Pechter et al,7 2003	17 (7 M, 10 F)	52	62.9 ± 5.9	18.8 \pm 0.9 mL/kg/min	
Leikis et al,8 2006	12 (10 M, 2 F)	49 ± 11	31 ± 13	22.2 \pm 4.0 mL/kg/min	50-80%
Leehey et al,9 2009	7 (7 M) ^b	66	44 ± 36	14.9 ± 1.1 mL/kg/min	
Mustata et al,10 2010	10 (6 M, 4 F) ^c	64	27	15.8 mL/kg/min	
Gregory et al, ¹¹ 2011	10	57.5 ± 11.5	30 ± 18	17.3 ± 5.2 mL/kg/min	52

Exercise intolerance in CKD

- **Exercise capacity**
 - is impaired already early in CKD, even when eGFR > 45ml/min/1.73m²
 - decreases with progression of kidney disease, independent of hemoglobin levels

Impact of vascular disease on exercise intolerance in CKD?

Determinants of VO₂peak

 VO_2 = cardiac output x (arterial-venous) O_2 difference

Exercise: **bloodpump** x dilation of **bloodvessels** and uptake of O₂ by **skeletal muscle**

Impact of vascular dysfunction on exercise intolerance in CKD

Arterial stiffness is independently associated with VO₂peak in predialysis CKD

	Bivariate correlation		Multiple regression	
	Pearson r	p-value	ß	p-value
Age	-0.285	0.011	-0.172	0.168
eGFR	0.525	<0.001	0.363	0.002
Hemoglobin	0.372	0.001	0.199	0.089
FMD	0.360	0.003	0.162	0.169
PWV	-0.435	<0.001	-0.301	0.010

 Arterial stiffness is a valuable target for improving exercise tolerance and thus quality of life

Impact of exercise training on vascular disease in CKD?

RCT 2012-2015: study design

ALLOCATION

Excluded (n=730)

not meeting inclusion criteria (n=674) declined to participate (n=56)

Randomized (n=48)

CONTROL

EXERCISE

Allocated for control (n=23)

- Received allocated intervention (n=22)
- Did not receive allocated intervention (n=1)

 Reason: withdrawal from further participation

Allocated for intervention (n=25)

- Received allocated intervention (n=24)
- Did not receive allocated intervention (n=1)
 Reason: withdrawal from further participation

POLLOW-UP

Lost to follow-up (n=1)

Discontinued intervention (n=1)

Lost to follow up (n=2)

Discontinued intervention (n=4)

Reasons

practical concerns (n=3) illness unrelated to the study (n=1)

ANALYSIS

Analysed (n=21)

excluded from analysis (n=0)

Analysed (n=19)

excluded from analysis (n=0)

Effects on exercise capacity and QoL

Exercise capacity

Quality of life

Significant improvement in the fields of

- cognitive function
- sleep quality
- energy levels

Effects on vascular function and progenitor biology

Vascular function

Progenitor biology

OPC, EPC and CAC migratory function: no significant changes

... So

 A 3-month moderate aerobic exercise training program improves aerobic capacity and QoL in patients with

- This increase could not be explained by an improvement in vascular function
 - Exercise-related factors:
 - too short?

CKD stage 3-4

- optimal type, inte
- Patient-related factors:
 - Underlying mechand functional

Large multicenter trials

of patients?

Translational research

From bench to bedside... and back again

Monocyte subsets and differential response to exercise?

- Role of miRNA regulation?
 - In adaptation to training

In summary...

- In patients with CKD, exercise training
 - Improves aerobic capacity
 - Improves quality of life and physical performance
 - Improves blood pressure control
 - Most evidence in CKD stage 2-5

 Future RCTs are necessary to define optimal exer training protocols for CKD

Figure 2. Effects of exercise training on aerobic capacity. Abbreviations: CI, confidence interval; CKD2-5, chronic kidney

Heiwe S. et al. AIKD (2014)

Acknowledgements

Department of Cardiology UZA

- C. Vrints
- E. Van Craenenbroeck
- P. Beckers
- B. Ectors
- M. Meessen
- T. Stoop
- I. Govaerts
- G. Ennekens

Department of Nephrology UZA

- D. Abramowicz
- M. Couttenye
- G. Verpooten
- **IL.** Bosmans
- R. Hellemans
- E. Snelders
- G. Van Looy
- G. Deplancke
- K. Meskens
- V. Van Moer

Laboratory of Cellular and Molecular Cardiology

V. Conraads†

V. Hoymans

S. van Ierssel

K. Van Ackeren

G. Frederix

L. Bruyndonckx

E. Nollet

S. Latet

D. Gevaert

T. Sente

Laboratory of Experimental Medicine and Pediatrics

B. De Winter

K. Ledeganck

A. Jürgens

M. Vinckx

P. Aerts

L. Vits

Interval training revisited...

